

Учреждение образования «Полоцкий государственный университет»

Научно-исследовательская опытно-экспериментальная лаборатория технической защиты информации

ХХVІ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ «КОМПЛЕКСНАЯ ЗАЩИТА ИНФОРМАЦИИ»

24 - 26 мая 2022 года

МЕТОД ОЦЕНКИ ЗАЩИЩЕННОСТИ РЕЧЕВОГО СИГНАЛА ПО ЕГО ОГИБАЮЩЕЙ

В.К. ЖЕЛЕЗНЯК, Е.Р. АДАМОВСКИЙ, А.Г. ФИЛИППОВИЧ

Учреждение образования «Полоцкий государственный университет», г. Новополоцк, Республика Беларусь Оперативно-аналитический центр при Президенте Республики Беларусь, г. Минск, Республика Беларусь

ВВЕДЕНИЕ

Отсутствие единой однозначной модели восприятия речи [1, 2] препятствует созданию цельной методики для разработки способов оценки защищенности для каналов утечки информации (КУИ) речевых сигналов.

Питание усилителей осуществляется через сеть переменного тока. Изменение потребления тока нагрузки приводит к его нестабильности на входе стабилизатора [3]. Таким способом речевой сигнал из питаемой микрофонной системы способен проникать в электромагнитный КУИ, являясь частью излучения усилителя.

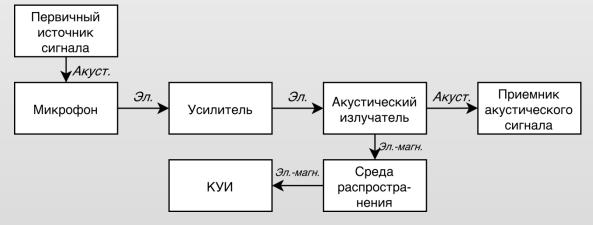


Рисунок 1 – Формирование КУИ

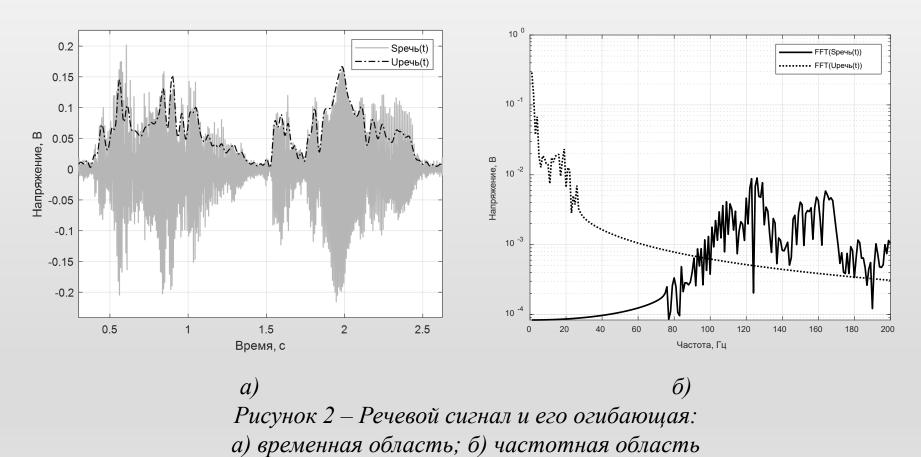
Предложен метод оценки защищенности КУИ на основе анализа огибающей измерительного речевого сигнала в точке наблюдения и реализована имитационная модель метода.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Аналитический сигнал s(t) является комплексной функцией, реальная $s_{re}(t)$ и мнимая $s_{im}(t)$ части которого связаны преобразованием Гильберта [4]. Набор значений мгновенной амплитуды u(t) соответствует понятию огибающей сигнала, которой оперируют при обработке АМ-сигналов.

$$s_{im}(t) = \int_{-\infty}^{\infty} s_{re}(\tau) / \pi(t - \tau) d\tau$$

$$u(t) = \sqrt{s_{re}^2(t) + s_{im}^2(t)}$$


Рассмотрим АМ-сигнал s(t), который получен путем перемножения модулируемого $s_c(t)$ и модулирующего $s_e(t)$ сигналов единичной амплитуды [5] с заданным коэффициентом корреляции:

$$s(t) = (1 + m \times s_e(t)) \times s_c(t)$$

$$m = s(t)_{\text{MAKC}} - s(t)_{\text{MUH}} / s(t)_{\text{MAKC}} + s(t)_{\text{MUH}}$$

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

На рис. 2 показан речевой сигнал $S_{peq_b}(t)$, для которого область частот ниже 75 Гц вырезана с целью устранения помех сети; и ограниченная фильтром НЧ-составляющая выделенной огибающей $U_{peq_b}(t)$ до 30 Гц, которая содержит 90% мощности всей огибающей.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Присутствие амплитудной модуляции в КУИ может быть вызвано процессами, не связанными с работой устройства, для которого осуществляется оценка защищенности. Таким образом, требуется установить взаимосвязь между излучаемым сигналом и сигналом в точке наблюдения.

В качестве меры схожести последовательностей используют коэффициент корреляции Пирсона, обозначаемый как R [6]:

$$R = \frac{M[((s(t) - M[s(t)]) \times (u(t) - M[u(t)])]}{\sigma_{s(t)} \times \sigma_{u(t)}}$$

где М – математическое ожидание;

 σ – стандартное отклонение.

Коэффициент корреляции R отражает то, насколько изменение одной величины влияет на другую, при этом вариация абсолютных амплитуд сигналов не изменяет результат.

МЕТОД ОЦЕНКИ ЗАЩИЩЕННОСТИ КУИ

Алгоритм включает шаги:

- **1.** Генерация измерительного AM-сигнала в речевом диапазоне.
- 2. Выделение огибающей из измерительного АМ-сигнала.
- **3.** Излучение измерительного сигнала в КУИ и его измерение в точке наблюдения.
- **4.** Выделение из огибающей аналогично п. 2.

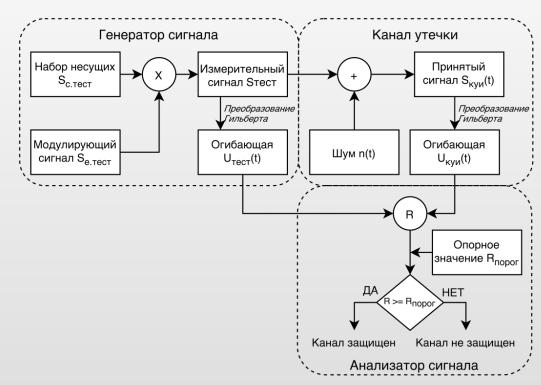


Рисунок 3 – Алгоритм имитационной модели

- 5. Обработка и взаимно-корреляционным способом.
- 6. Сравнение полученной величины с нормативным значением.

МОДЕЛИРОВАНИЕ

Имитационная модель реализована в среде *MatLab*.

Получены сигналы $S_{peqb,KyU}(t)$, $U_{peqb,KyU}(t)$, $S_{гарм,AM,KyU}(t)$ и $U_{гарм,AM,KyU}(t)$. Огибающие ограничивались по частоте до 30 Гц. Измерено соотношение исходного m и полученного $m_{30\Gamma_{\psi},KyU}$ для сравнения со значениями корреляции R. Дополнительно был реализован вариант без ограничения огибающей по частоте для исследования влияния ВЧ-составляющей на результаты моделирования, измерено соответствующее значение m_{KyU} .

Таблица 1 – Коэффициенты корреляции и модуляции сигналов в шумах

осш,	$U_{peub}(t)$ u $U_{peub,KYM}(t)$				$S_{peub}(t) u$	$U_{rapm.AM}(t)$ u		$S_{capm,AM}(t) u$
дБ	$R_{30\Gamma u}$	<i>т</i> _{30Ги.КУИ}	R	т _{куи}	$S_{peq_b,Kyy}(t)$ R	$egin{array}{c} U_{ extit{\it гарм.A}} \ R_{30\Gamma extstyle \mu} \end{array}$	_{М.КУИ} (t) т _{30Гц.КУИ}	$S_{2apm.AM.KYU}(t)$ R
нет	1	1	1	1	1	1	1	1
+15	0.999	0.9586	0.986	0.9998	0.9845	0.9989	0.8760	0.9845
+10	0.997	0.8678	0.960	0.9997	0.9534	0.9963	0.7586	0.9534
+5	0.992	0.6932	0.874	0.9998	0.8715	0.9897	0.5872	0.8715
0	0.982	0.5633	0.703	0.9999	0.7067	0.9782	0.3938	0.7071
-5	0.954	0.3765	0.407	1	0.4902	0.9552	0.2126	0.4903
-10	0.876	0.2020	0.166	0.9985	0.3012	0.8485	0.1342	0.3013
-15	0.584	0.0970	0.064	0.9991	0.1745	0.4929	0.1041	0.1753
-20	0.214	0.0915	0.019	0.9995	0.0994	0.1886	0.0906	0.0988
-25	0.082	0.0817	0.006	0.9992	0.0559	0.0739	0.0884	0.0571

МОДЕЛИРОВАНИЕ

Оценка корреляционных свойств сигналов во всей доступной частотной полосе дает низкие значения, поскольку в таком случае влияние широкополосного шума значительно снижает величину меры схожести.

Показано, что модуляция речевого сигнала более устойчива к шуму, чем гармонического модулированного сигнала.

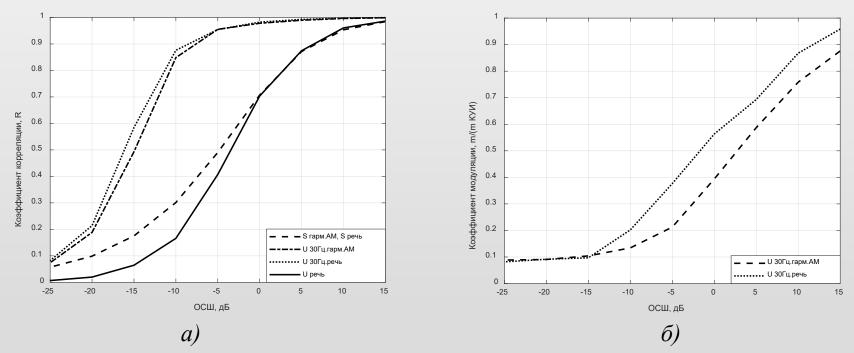


Рисунок 4 — Результаты имитационного моделирования, сравнение: а) коэффициента взаимной корреляции; б) коэффициента модуляции

ЗАКЛЮЧЕНИЕ

- 1. Представлен метод оценки защищенности канала утечки информации на основе взаимно-корреляционного анализа огибающей измерительного сигнала в речевом диапазоне частот и результаты имитационного моделирования метода.
- 2. Произведен сравнительный анализ результатов для огибающей речевого сигнала, исходного речевого сигнала и гармонического амплитудномодулированного сигнала.
- 3. Показаны преимущества использования огибающей речевого сигнала для оценки защищенности канала утечки информации.

Список литературы

- 1. Анохин В.В., Герасименко Е.А., Кондратьев А.В. Рассмотрение критериев защищённости речи на основе словесной и смысловой разборчивости // Специальная техника. 2016. № 6. С. 22-28.
- 2. Шелухин О.И. Цифровая обработка и передача речи. М.: Радио и связь, 2000. 456 с.
- 3. Костиков В.Г., Парфенов Е.М., Шахнов В.А. Источники электропитания электронных средств. Схемотехника и конструирование. М.: Горячая линия—Телеком, 2001. 344 с.
- 4. Бутырский Е.Ю. Преобразование гильберта и его обобщение // Научное приборостроение. 2014. № 24(4). С. 30-37.
- 5. Баскаков С.И. Радиотехнические цепи и сигналы. М.: Ленанд. 2016; 528.
- 6. Рябенко Д.С., Лавров С.В., Боровкова Е.С. Приложение сигнальных графов и матричного анализа для математического моделирования каналов утечки информации // Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки. 2018 № 4. С. 56-60.

СПАСИБО ЗА ВНИМАНИЕ!