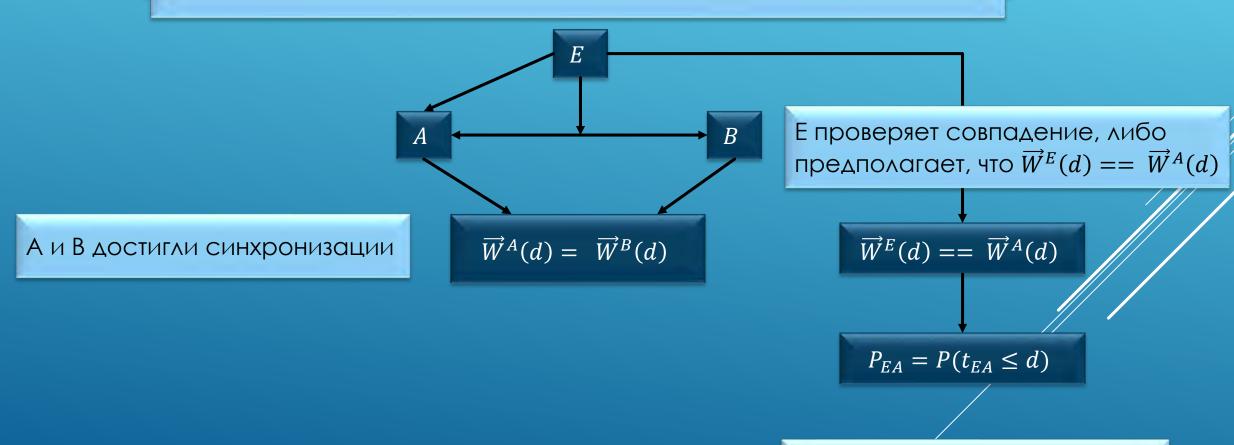
ПОВЫШЕНИЕ
КОНФИДЕНЦИАЛЬНОСТИ ОБЩЕГО
СЕКРЕТА, СФОРМИРОВАННОГО С
ПОМОЩЬЮ СИНХРОНИЗИРУЕМЫХ
ИСКУССТВЕННЫХ НЕЙРОННЫХ
СЕТЕЙ

Радюкевич М. Л., Голиков В. Ф.

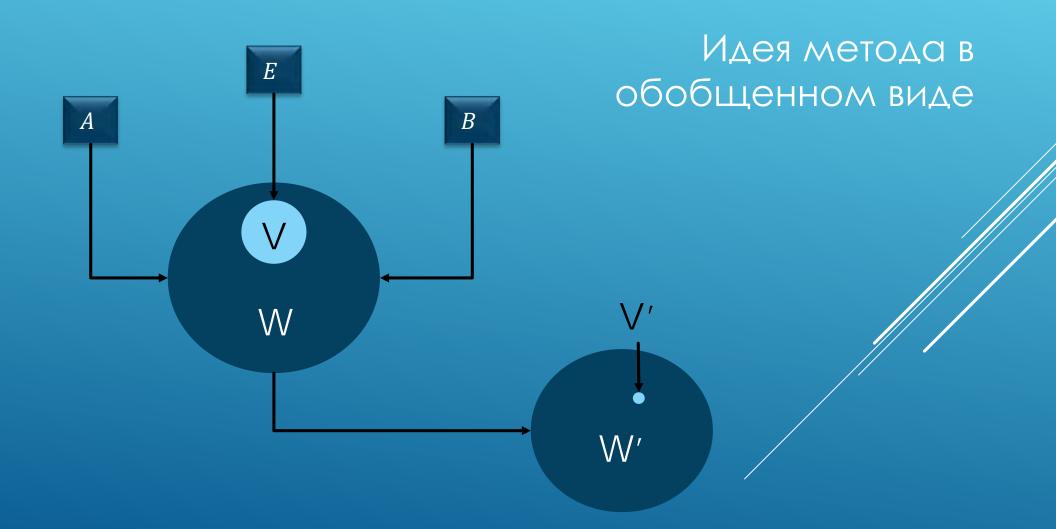
Формирование общего секрета между абонентами A и B

Выбираем такое d, чтобы $P(t_{AB} \le d) \ge P_{\mathrm{Tp}}$


ГДЕ t_{AB} Если $\overrightarrow{W}^A(d)=\overrightarrow{W}^B(d)$, то общий секрет $S^{AB}=\overrightarrow{W}^A(d)=\overrightarrow{W}^B(d)$ А ν

 $\overrightarrow{W}^A(0)$ и $\overrightarrow{W}^B(0)$ выбираются случайным образом A и B $\overrightarrow{W}^A(d)$ и $\overrightarrow{W}^B(d)$ фиксируются не оглашаясь A и B после d тактов синхронизации

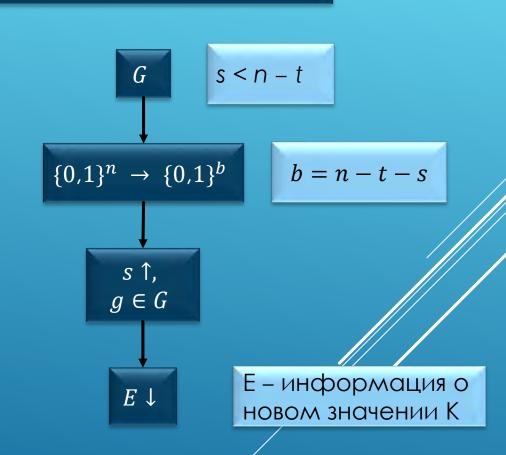
 S^{AB}


Модель поведения криптоаналитика

Криптоаналитик Е синхронизирует свою сеть, например, с сетью А

 P_{EA} - вероятность совпадения

Повышение конфиденциальности


Задача повышения конфиденциальности

Сформирован абонентами A и B в иде битовой строки размером n

Криптоаналитик E имеет информацию V, коррелированную с W и дающую знание t бит из n

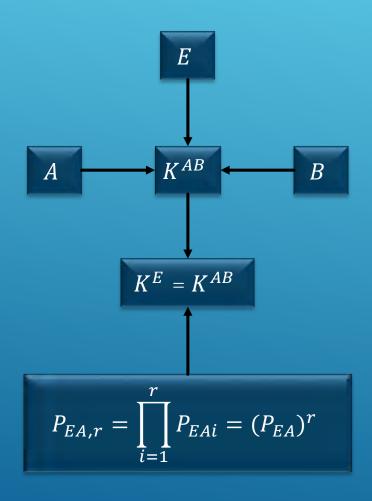
А и В хотят публично выбрать функцию сжатия д

Частичная информация E о W и ее полная информация о g должны дать мало информации о K

Задача повышения конфиденциальности

Анализ безопасности сформированного секрета

$$P_{AB,r} = \prod_{i=1}^{r} P_{ABi} = (P_{AB})^{r}$$


Согласно данному варианту формирования общего секрета $P_{AB,r} \geq P_{\mathrm{Tp}}$

$$m_{AB,r} \ge \frac{\ln(1-P_{\mathrm{Tp}})}{\ln(1-P_{AB,r})}$$

Количество сеансов синхронизации А и В при различных значениях г для обеспечения необходимых значений вероятностей

P_{AB}	0,8	0,90	0,95	0,99	
5	8	4	3	1	
10	27	7	4	2	
20	259	24	7	2	
50	209 895	580	38	4	

Анализ безопасности сформированного секрета

Вероятность совпадения значения K^E с K^{AB} при разных значениях P_{EA} и r

P_{EA} r	5	10	20	50	
0,01	1,0*10 ⁻¹⁰	1,0*10-20	1,0*10-40	1,0*10- ¹⁰⁰	
0,05	3,1*10 ⁻⁷	9,7*10 ⁻¹⁴	9,5*10 ⁻²⁷	8,8*10 ⁻⁶⁶	
0,10	1,0*10 ⁻⁵	1,0*10 ⁻¹⁰	1,0*10 ⁻²⁰	1,0*10 ⁻⁵⁰	
0,20	0,20 3,2*10 ⁻⁴		1,0*10 ⁻¹⁴	1,1*10 ⁻³⁵	

Анализ безопасности сформированного секрета

 $P_{EA,r}$ зависит от r экспоненциально и может быть выбрана сколь угодно малой увеличением r

для A и B вероятность успешного сеанса поддерживается за счет увеличения m_{AB}

При этом описанный эффект будет иметь место, если

$$P_{EA,r} \ll 1$$

$$P_{AB,r} \approx 1$$

Свертка

 $K = g(S_1, S_2, \dots, S_r)$

Преобразование, свертывающее множество размером *rb* в *b*, при котором выходная величина зависит от всех битов входной

Хеш-функции

Обладают стандартными размерами выходных величин, которые будут ограничивать размер сформированного секрета

Свертка побитовым сложением по (mod 2) всех битов множества $\{S_i\}$

$$K^{A(B)} = \sum_{i}^{r} S_i^{A(B)}$$
 (mod 2)

Бинарная последовательность длиной *b*, в которой каждый бит – сумма битов по модулю 2 из *r* слагаемых

Отклонение вероятности от равномерного распределения

j_i	0	1	2	3	4	5	6	7
j_{i исх	0	1	2	3	4	5	6	7
Δ, %	-0,04	-0,17	0,26	0,34	-0,26	0,21	-0,27	-0,08
Ĵі	8	9	10	11	12	13	14	15
j_{i исх	8	-1	-2	-3	-4	-5	-6	- 7
Δ, %	-0,03	-0,42	0,35	0,41	-0,16	0,03	-0,03	0,38

$$\Delta_i = \frac{(f_i - f_0)}{f_0} \cdot 100,$$

где f_i — частота i-го значения,

 f_0 —частота при равномерном распределении $f_0 = \frac{1}{L_2 - L_1 + 1}$,

 j_i — значение чисел из диапазона $[L_1, L_2]$.

Заключение:

Для решения задачи повышения конфиденциальности формируемого общего секрета предлагается использовать функцию сжатия g

Вероятность успеха криптоаналитика ($P_{EA,r}$) зависит от r экспоненциально и может быть выбрана сколь угодно малой увеличением r

Для А и В вероятность успешного сеанса поддерживается за счет увеличения *т*

Закон распределения сформированного ключа после функции сжатия близок к равномерному, при чем равномерность возрастает с ростом *г*

СПАСИБО ЗА ВНИМАНИЕ!

Радюкевич Марина Львовна

Государственное предприятие «НИИ ТЗИ»

Начальник испытательной лаборатории по требованиям безопасности информации

тел.+375 17 294-01-71

факс +375 17 285-31-86